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Abstract. An exhaustive analysis of the shape properties of discrete self-avoiding random
walks is presented. The dependence of the main parameters of the probability distributions
from the length of the walk and the differences between these distributions for conventional
and self-avoiding walks are studied. By means of high-precision Monte Carlo simulations it is
shown that the characteristics of the shape of self-avoiding random walks, when regarded as a
function of the walk length, present the expected asymptotic behaviour. The differences with
conventional random walks depend upon the observable considered: the probability distributions
of the principal inertia eigenvalues of self-avoiding walks spread around the most probable value
more widely than the corresponding distributions for unrestricted walks, while in the cases of the
asphericity or ratios of inertia eigenvalues, the distributions for self-avoiding walks are somewhat
more peaked than their counterparts for conventional random walks. Analytical expressions for
the probability distributions of inertia moment ratios and the two-dimensional asphericity are
given. For common random walks there is an excellent agreement between these analytical
distributions and the Monte Carlo data. In this work it is established that this concordance is
maintained if the same analytical distributions are applied to the self-avoiding case. This means
that within the precision of the simulations the functional form of the mentioned distributions
does not vary when passing from conventional to self-avoiding walks.

1. Introduction

Both the conventional random walk (RW) and the self-avoiding walk (SAW) represent well
known objects appearing in diverse areas of physics such as quantum field theory [1] and
the theory of polymer molecules [2]. One interesting feature of both SAWs and RWs is
that their average shape is not spherical [3–10]. This property is of interest when analysing
some polymeric fluids [8, 11], and/or the effect of the concentration [12] or interactions [13]
on the mean dimensions of single polymer chain models.

In previous papers [3, 4] we presented a comprehensive study of the shapes of discrete
RWs in spaces of arbitrary dimension, and it is the main purpose of the present work to
report the results of a similar exhaustive analysis in the case of discrete SAWs.

There are previous studies about shape properties of SAWs: in [5] the mean values of
the principal inertia moments of both RWs and SAWs are analysed; in [8] the asphericity
of two- and three-dimensional Gaussian SAWs is studied, together with other properties of
open and ring walks; and in [9] the existence of correlations between the principal axes of
inertia and the end-to-end vector is investigated. Other works treating the problem of the
shape properties of walks (but not necessarily referring to SAWs) are briefly reviewed in [3].
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With the exception of [3, 8], all the works cited in the previous paragraph deal
primarily with mean values of observables; in general there is no explicit mention either of
other statistical parameters like standard deviations, etc, or of probability distributions of
observables.

Our study is mainly devoted to the analysis of probability distributions of several shape-
describing quantities. In most cases these distributions are obtained from high-precision
Monte Carlo simulations. The SAWs are generated using the pivot algorithm [14, 15]
which, at present, is considered to be one of the most efficient procedures for generating
lattice SAWs.

The scaling properties of some quantities, as long as the size of the walks goes to infinity,
is analysed using the data coming from our simulations. The SAW scaling properties have
been extensively studied [1, 16–21] and thoroughly reviewed in [22]. However, all these
works refer to global size properties like the well known radius of gyration, for example,
and no explicit reference is made to shape-describing magnitudes like the ones studied here.
Therefore, we considered it of interest to perform direct tests of the scaling behaviour of
these shape quantities, and decided to present the results in this paper.

Such analysis put into evidence that the main properties of the shape distributions, such
as means or standard deviations, present only small variations when the size of the SAWs is
changed, and that these variations are due to the fact that the higher order terms in the asymp-
totic series for the corresponding observables are not completely negligible. The sign and
magnitude of these ‘corrections to scaling’ are concordant with the results presented in [22].

Given that the shape properties do not substantially vary when the size of the walks
goes to infinity, it is sufficient to study them at a convenient fixed size in order to obtain
an adequate knowledge of their behaviour.

This fact is taken into account in our work when analysing the probability distributions
of many quantities, namely, the principal inertia moments, some ratios of them, the so-called
asphericity [3, 4] and the first quadrant angle between the principal inertia axis and the end-
to-end vector [3, 9]. In all cases, the probability distributions of both SAWs and RWs are
obtained and compared, in order to put into evidence the differences existing between these
two kinds of objects.

In the case of the ratios of inertia moments, the validity of the analytic probability
distribution introduced in [4] for RWs, is successfully checked for the SAW case. The
derived analytical probability distribution for the two-dimensional asphericity [4] is also
checked. In both cases there is an excellent agreement between the analytical and true
distributions. The results presented in [4] and in the present work indicate that within the
precision of the simulation, the functional form of the mentioned probability distributions
is the same for both RWs and SAWs.

This paper is organized as follows. Section 2 contains the definitions of most of the
observables needed to adequately describe the shape of RWs and/or SAWs. Section 3 is
devoted to the description of the numerical algorithm used to generate the SAWs. Section 4
is dedicated to a detailed exposition of the results of the Monte Carlo simulations, including
comparisons of our data with previous works whenever possible, and analysing the analytical
probability distributions of the inertia moment ratios and the two-dimensional asphericity.
Finally, in section 5 we give some concluding remarks.

2. Definitions

Both conventional or self-avoiding random walks ofs steps in ad-dimensional space can
be defined as sets ofs + 1 d-dimensional vectorsrα, α = 0, . . . , s, which represent the
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positions within each single walk [3]. With no loss of generality we will taker0 = 0. We
also introduce the step vectors

rα = rα−1 + εα α = 1, . . . , s. (1)

For discrete unrestricted walks with coordination number 2d, each one of the vectorsεα

may be any one of the unitary vectors±e1, ±e2, . . . ,±ed , whereB = {e1, . . . ,ed} is an
orthonormal basis of thed-dimensional space.

For SAWs we must impose the additional self-avoidance constraint

rα 6= rβ for all α 6= β. (2)

To obtain a convenient measure of the ‘size’ and/or the shape of a walk, we define the
following quantities [3]:

(i) The centre of mass:

rCM = 1

s + 1

s∑
α=1

rα. (3)

(ii) The inertia matrix:

Tij = 1

s + 1

s∑
α=0

(xiα − xCMi )(xjα − xCMj ) 1 6 i 6 d, 1 6 j 6 d. (4)

This matrix is symmetric and positive definite. It possessesd positive eigenvalues
λ1 > λ2 > · · · > λd , and an orthogonal set ofd eigenvectors,u1, . . . ,ud .

These quantities are used to define other derived magnitudes which are adequate to
describe the geometric properties of the walk. Within this paper we are going to use the
following ones.

(i) The radius of gyration, defined as the trace of the matrixT [3]:

S2 = Tr T =
d∑

k=1

λk. (5)

The radius of gyration can be taken as a measure of the ‘spherical volume’ occupied by the
walk.

(ii) Ratios of inertia moments:

Rij = λi

λj

i 6= j, λj 6= 0. (6)

For convenience and with no loss of generality, we imposei < j [4]. With this restriction
we haveλi 6 λj and therefore 06 Rij 6 1.

(iii) The asphericity:

A = 1

d − 1

[
d

( d∑
i=1

λ2
i

)( d∑
i=1

λi

)−2

− 1

]
. (7)

This quantity takes values between 0 and 1.A = 0 (1) corresponds to a perfectly spherical
(rod) shape [3, 4].

(iv) The first quadrant angle between the path ends and the inertia axis corresponding
to the largest eigenvalueλ1 [3, 9]:

cos2 = rs · u1

‖rs‖‖u1‖ . (8)

One of the common ways of studying the geometric or shape properties of both
conventional or self-avoiding walks is by means of a computer simulation, where statistically
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independent walks of a given lengths are generated. In general, this provides a set of walks
with different shapes, which can be used to build frequency histograms for quantities such
as the asphericity and the principal inertia moments. The same data can be used to evaluate
other quantities such as mean values, standard deviations, etc. The frequency histogram data,
adequately normalized, can be used to numerically approximate the probability distribution
of the corresponding observable. The details of such calculations are given in the following
sections.

3. The Monte Carlo algorithm

To perform, by means of a Monte Carlo simulation, a statistical analysis about any given
property of a random walk, one must first provide a set ofN statistically independent samples
generated at random. This requirement can easily be fulfilled in the case of conventional
RWs [3, 4]. On the other hand, to randomly generate a set of statistically independent SAWs
is a task that requires some special considerations and the use of more involved algorithms.

First, it is necessary to define more rigorously the concept of ‘a SAW generated at
random’ introduced in the preceding paragraph. To this end, let us define the set� (�0) of
all conventional (self-avoiding)d-dimensional RWs of lengths. Clearly�0 ⊂ � since any
SAW is also a common RW. LetK (K0) be the number of elements of� (�0); we have
K0 < K. We can then define the ‘randomness’ or ‘uniform probability distribution’ for
SAWs as the distribution which assigns to every element of�0 a constant probability 1/K0.

Secondly, an algorithm capable of generating a series of statistically independent and
uniformly distributed SAWs must be provided. A naive or ‘simple sampling’ procedure
can be immediately defined [15]. (i) Generate a conventional RW, uniformly distributed
in �. (ii) Check the RW for self-avoidance. If it is self-avoiding take it as a new sample,
otherwise return to (i).

It is not difficult to demonstrate that the series of samples generated by such a process
is uniformly distributed in�0. However, it can be shown that in most cases this algorithm
is not very efficient: the probability of success in step (ii) isK0/K, which behaves
as K0/K ∼ exp(−s/s0), asymptotically withs → ∞, with s0 = 2.4, 4.0, 6.0, . . . ,∞
for d = 2, 3, 4, . . . ,∞ [15, 23, 24], and this implies that the procedure becomes inefficient
for s > 10s0 approximately.

3.1. The pivot algorithm

The figures of the last paragraph imply that the simple sampling procedure may not be
applicable, from the practical point of view, to generate low-dimensional SAWs withs larger
than ' 50–100. Even if the selection mechanism of step (i) is modified, preconditioning
the initial selection in order to enlarge the acceptance probability, as explained in [15], the
algorithm continues to be computationally unaffordable whens is large. To overcome this
difficulty, a number of improved algorithms have been devised. The detailed description
of such procedures is beyond the scope of this work; the interested reader can find them
exhaustively reviewed in [15].

Among all the algorithms that have been developed to generate discrete SAWs in lowd

spaces, the so-calledpivot algorithm remains one of the most efficient, and is the one we
have used for our simulations.

The pivot algorithm [14, 15] is a dynamic procedure, that is, each new SAW is obtained
by performing an elemental modification on the previous one. A ‘completely different’
sample is obtained after a determined number of elemental moves.
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Let G be the symmetry group of the lattice, that is, the group of all orthogonal
transformations which leave the lattice invariant (i.e. rotations ofπ/2 around the axes,
axis reflections, etc). LetG0 be the set of all elements ofG excluding the identity. The
pivot algorithm can then be defined as follows. (i) A new SAW is obtained from a given
previous one performing the following elementary move. Take at random an elementg

of G0, and a pointk within the SAW (06 k < s). Apply g to all elements of the walk
subsequent to the pivot pointrk, using it as the temporary origin; in other words, evaluate

r′
l = rk + g(rl − rk) l = k + 1, . . . , s. (9)

(ii) Check the resulting set of points(r0, . . . , rk, r
′
k+1, . . . , r

′
s) for self-avoidance. If the

check is passed then accept the set as the new SAW, otherwise count the previous one once
more. This procedure satisfies detailed balance with the correct equilibrium distribution, as
well as ergodicity [14, 15, 28]. (iii) In order to obtain statistically independent samples it is
necessary to perform a numberNS of elementary moves between samples. The magnitude
of NS varies from case to case, as we shall see below. (iv) It is also necessary to provide
as input an initial SAW, randomly selected from the set�0. This can be done either by
using another algorithm, or by thermalizing an arbitrary SAW withNT pivot steps. The
first alternative can be used fors not so large; otherwise the second option may be the only
applicable one.

A detailed study of the pivot algorithm [14] showed that the acceptance fraction of
step (ii) behaves roughly ass−p with s large, wherep ' 0.19 (0.11) for d = 2 (3) (for
d > 3, p goes monotonically to zero). It has also been established that a fewC ∼ 10
accepted moves are generally sufficient to get a practically independent SAW. This leads to
the conclusion that taking

NS > Csp (10)

will be enough to ensure an adequate statistical independence between samples. We have
found that this is acceptable provided that theminimumnumber of accepted moves between
samples obtained in a simulation is not much lower than 10. Looking at equation (10)
one can see thatC actually represents theaveragenumber of accepted moves between
samples. If the dispersion around this mean is important (as it does happen fors very large,
and especially ford = 2), the mentioned minimum can be very low, even zero, and not
completely independent samples can eventually be generated unless a somewhat largerNS

is used. We consider that settingC ∼ 20 in equation (10) is sufficient to obtain a safelower
bound for NS when s is large (that is,s ∼ 50 000). Of course, it is always recommended
to chooseNS as large as permitted by the computational power available.

The number of thermalizing steps,NT , should always be taken large enough to ensure
that a stationary regime has been reached. Our experience indicates thatNT > 103NS is
adequate for most cases.

4. Numerical results

The numerical simulations were performed using the pivot algorithm, already introduced
in the previous section, to generate a large number of statistically independent samples,N ,
keepingd ands fixed. For each sample, the already defined quantities were evaluated and
used to perform several statistical analyses. A linear chain of lengths was used as the
initial configuration. Sampling was started after a thermalizing process ofNT pivot steps.
The values used for parametersNT andNS were always generously larger than the bounds
given in section 3.1.
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The frequency histograms for the different observables considered were normalized
accordingly with [4]. (i) A certain numberm of intervals [xk, xk+1), k = 1, . . . , m

(xk > xl for k > l) were defined such that [x1, xm+1] represents the region of interest
for the corresponding variable. (ii) TheN Monte Carlo samples are used to evaluate them

frequenciesfk, k = 1, . . . , m, which represent the number of times the variable happened
to lie within the corresponding interval [xk, xk+1). Thefk are modified to obtain normalized
frequencieshk in the following way:

hk = fk

N(xk+1 − xk)
k = 1, . . . , m. (11)

The relation between these frequencies and an analytical probability distributionP(x),
for N andm large, follows immediately [4]:

hk ↔ P(ξk) (12)

whereξk can be approximated by

ξk = xk+1 + xk

2
. (13)

The actual values ofm used in the present simulations vary from case to case, but are
always large enough to permit a safe use of equation (13).

4.1. Asymptotic behaviour withs → ∞
A widely studied characteristic of SAWs is the behaviour of some quantities in the limit of
large lengths. A typical example is the radius of gyration, whose mean is known to grow
with s accordingly with the law [18]

〈S2〉 = MS2s2ν(1 + b(1)s−11 + · · ·) (14)

whereν and11 are referred to ascritical exponents, andMS2 asamplitude. The values of
these constants depend on the dimensiond. In the case ofν, it is believed that [19–22, 26]

ν =


3
4 for d = 2

0.588 for d = 3
1
2 + ε/16+ · · · for d = 4 − ε

1
2 for d > 4.

(15)

The mean value of any other global observable will have a similar scaling behaviour [22].
This includes the end-to-end distance,r2

s , the inertia eigenvalues, etc, and all their statistical
moments.

In most of the numerical simulations performed to test this scaling behaviour, mean
values of ‘size’ quantities like the radius of gyration were always used. We do not know
about any study of the scaling properties of shape quantities like the inertia moments, their
probability distributions and/or related observables.

Consider, for instance, the inertia momentsλk, k = 1, . . . , d. It is expected that, for
s → ∞

〈λk〉 = Mks
2νk (1 + · · ·) k = 1, . . . , d (16)

where all the exponentsνk should be equal to the exponent of the radius of gyration:

νk = ν k = 1, . . . , d. (17)
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It is possible to see that a scaling law of the form of (14), withν given by (15), also holds for
the statistical moments of the inertia eigenvalues, for example, the standard deviationsσλk

.
Some representative examples which confirm such behaviour are presented in table 1, where
the mean values of the largest and smallest inertia moments together with the respective
standard deviations are tabulated for several values ofs, and ford = 2 and 3. The moments
and the corresponding standard deviations are divided by the leading term of equation (16):

〈λk〉L = Mks
2ν (18)

with ν given by equation (15). The amplitudesMk were estimated in the following way:
from equations (5), (14) and (18), it is possible to demonstrate that

Mk = 〈λk〉
〈S2〉MS2. (19)

The amplitudeMS2 for the radius of gyration has been extensively studied, and very precise
estimates were obtained [22]:MS2 = 0.108 15 (0.194 55) ford = 2 (3). Using these data
and the data coming from our simulations (for the largest values ofs), equation (19) can
be evaluated. The resulting amplitudes are presented in table 2.

The data of table 1 reveal that the same scaling law applies to all the mean values and
standard deviations considered, as expected. It is also important to note that the observed
values are not exactly equal to the asymptotic prediction, and that the difference diminishes
whens grows. This indicates that the corrective terms of equation (16) cannot be completely

Table 1. Mean value of the largest and smallest inertia moments (〈λ1〉, 〈λd 〉) and their respective
standard deviations, divided by the asymptotic expectation (18) for the corresponding moment,
tabulated for various values ofd ands. The numberN of Monte Carlo samples is also displayed.
The quantities in brackets indicate the error in the last two digits displayed, which correspond
to twice the standard error of the mean.

d s N (×103) 〈λ1〉/〈λ1〉L σλ1/〈λ1〉L 〈λd 〉/〈λd 〉L σλd
/〈λd 〉L

2 100 1000 1.011 07(92) 0.4615 1.011 8(10) 0.5141
200 1000 1.006 25(93) 0.4639 1.007 5(10) 0.5151
500 300 1.002 9(17) 0.4639 1.002 9(19) 0.5140

1 000 450 1.001 5(14) 0.4646 1.003 3(15) 0.5165
5 000 150 1.000 1(24) 0.4647 1.001 2(27) 0.5139

10 000 100 1.001 7(30) 0.4688 1.002 3(33) 0.5144
40 000 50 1.002 7(43) 0.4698 1.003 1(48) 0.5189

3 100 1000 0.962 0(10) 0.5030 0.935 41(77) 0.3840
200 1000 0.970 8(10) 0.5152 0.952 70(79) 0.3934
500 300 0.980 3(19) 0.5269 0.970 9(15) 0.4016

1 000 250 0.986 0(21) 0.5345 0.981 8(16) 0.4068
5 000 150 0.991 3(28) 0.5404 0.995 3(21) 0.4128

10 000 100 0.988 6(34) 0.5397 0.996 1(26) 0.4119
40 000 50 0.995 8(49) 0.5451 0.998 7(37) 0.4140

Table 2. The amplitudesMk of equation (18), tabulated ford = 2, 3.

d M1 M2 M3

2 0.0935 0.0146 —
3 0.1518 0.0320 0.0108
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neglected. Furthermore, the corrections are more significant ford = 3, and in this case
the asymptotic value is reachedfrom belowfor both the eigenvalue means and the standard
deviations, implying that the correction is negative, similarly as with the mean radius of
gyration [22].

Let us now consider the probability distribution of the inertia eigenvalues,Pk;s(λ),
where s explicitly indicates the dependence on the length of the walks. If a scaling law
similar to that already considered applies to this probability distribution, then a scaling
constantWs2s1 should exist such that

Pk;s1(λ) = Ws2s1Pk;s2(Ws2s1λ). (20)

It is easy to see that this scaling constant is related to the mean moments via

Ws2s1 = 〈λk〉s2

〈λk〉s1

(21)

and using equation (16), it can be put in the form

Ws2s1 =
(

s2

s1

)2ν (
1 + higher order corrections(s2)

1 + higher order corrections(s1)

)
. (22)

We have checked the veracity of equation (20) using our Monte Carlo data. To this
end we renormalized the histogram of the scaled distributionWs2s1Pk;s2(Ws2s1λ) to obtain a
modified data set containing the normalized frequencies for the set ofm intervals selected
for Pk;s1(λ) (see equation (11)), and then compared both histograms using anm × 2 chi-
square test. The results from such a test are as follows. (i) Using equation (21) to evaluate
the scaling constants, for bothd = 2 andd = 3, and for all combinations ofk ands1 6= s2,
the distributions are coincident within the 0.01 significance level†. (ii) The coincidence is
maintained if one considers the largest lengths and evaluatesWs2s1 using the leading term
of (22).

Using equations (21) and (22) and the data displayed in table 2, it is easy to see that in
the asymptotic regime (s → ∞), the scaling constantsWs2s1 are independent ofk, and that
a slight dependence ofWs2s1 on k appears for lower values ofs, especially ford = 3. This
indicates that the corrections to scaling of equation (22) vary withk, in contrast with the
universal nature of the leading term.

A convenient way to study this fact further is to analyse the behaviour of the
asphericity (7) when the SAW size goes to infinity. We performed several simulations
to check the degree of dependence on the SAW length of the main characteristics of the
shape distributions of SAWs. To this end we studied the mean value of the asphericity and
its standard deviation. In table 3 we placed our results fors from 100 to 40 000, and in
figure 1 the mean asphericity〈A〉 is plotted versuss for d = 2 (a) andd = 3 (b). The error
bars represents twice the standard error. From figure 1(a) it remains evident that within
error bars the mean value of the two-dimensional asphericity remains constant for all the
sizes studied. On the other hand, in the three-dimensional case, plotted in figure 1(b), there
is an asymptotic regime, but it is reached only for the largest sizess, indicating that the
corrective terms of equation (16) are more significant in this case. This agrees with previous
results obtained for size quantities [22]. We can see that in both cases, the behaviour of the
mean asphericity is compatible with both the equality of exponents of equation (17) and the

† To perform a chi-square test adequately it is necessary to discard all the data points with very low frequencies
(less than 6). In our case this implies that both ‘tails’ of the distribution, namely, the region near the origin and
the region of largeλ, could not be taken into account in the test. Plotting all the checked pairs of distributions we
could observe that there is always a very close coincidence in the tails, and for this reason we consider that the
conclusions of the chi-square tests can be safely extrapolated to the whole distribution.
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Table 3. Mean value and standard deviation of the asphericity (〈A〉, σA), tabulated for various
values ofd and s. The numberN of Monte Carlo samples is also displayed. The quantities
in brackets indicate the error in the last two digits displayed, which correspond to twice the
standard error of the mean. The mean values are plotted in figure 1.

d s N (×103) 〈A〉 σA

2 100 1000 0.504 20(50) 0.248 43
200 1000 0.503 75(50) 0.248 61
500 300 0.504 28(91) 0.248 21

1 000 450 0.503 68(74) 0.248 65
5 000 150 0.503 5(13) 0.248 83

10 000 100 0.503 7(16) 0.248 85
40 000 50 0.503 0(22) 0.248 98

3 100 1000 0.438 82(38) 0.191 54
200 1000 0.436 61(38) 0.191 31
500 300 0.434 65(70) 0.191 19

1 000 250 0.433 81(77) 0.191 79
5 000 150 0.431 40(98) 0.191 23

10 000 100 0.430 8(12) 0.191 09
40 000 50 0.430 9(17) 0.191 33

Figure 1. Mean value of the SAW asphericity〈A〉
plotted versuss (logarithmic scale) for (a) d = 2
and (b) d = 3. The error bars represent twice the
standard error of the mean. The numerical values
are tabulated in table 1. Notice the vertical scales
which span very narrow intervals with less than
2% of dispersion around the central value.

already mentioned dependence onk of the scaling factors of equation (22). From the data of
table 3 it can also be noticed that the standard deviations remain virtually invariant for both
d = 2, 3. The behaviour of the mean and standard deviation indicate that the asphericity
distribution,PA(A), 0 6 A 6 1, should approach a stable asymptotic distribution for large
sizes. We have performed chi-square tests, similar to the ones previously mentioned, to
compare the distributions for sizes 10 000 and 40 000, respectively, and concluded that for
bothd = 2 and 3 there is coincidence at the 0.01 significance level. The very low frequency
regions of the distributions were not included in the tests. These regions, however, do not
seem to present a pathological behaviour, and our conclusion is that one can safely extend
the results of the chi-square test to the whole range 06 A 6 1. Of course, a more rigorous
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proof would require a much larger number of samples.
The data presented so far lead us to the conclusion that for all the sizess that were

considered, that is 1006 s 6 40 000, the global structure of the probability distributions
of the different quantities considered in this paper does not present substantial variations,
and that this also applies in the asymptotic regime (s → ∞). Therefore, to describe the
characteristics of such probability distributions it is sufficient to study them for a single
fixed value ofs conveniently chosen. We have takens = 200 for most of the simulations
of the following sections.

4.2. The principal inertia moments

As we have seen in the previous section, the mean values of the inertia moments〈λk〉 grow
ass2ν ass → ∞ (equations (16) and (17)), withν = 1

2 for RWs, andν > 1
2 (15) for SAWs

with d = 2, 3. Loosely speaking, this means that for a given lengths, and in the average,
SAWs should be somewhat ‘larger’ than conventional RWs.

We also know that the RW probability distributions of the different inertia eigenvalues
λk can be approximated by chi-square distributions of the form [3]

Pk(λ) = 1

0(νk)

νk

αk

(
νkλ

αk

)νk−1

exp

(
−νkλ

αk

)
. (23)

0(x) stands for the gamma function, andαk andνk are external parameters.
For the case of SAWs, one expects that the excluded volume effect will accordingly

modify the inertia eigenvalue probability distributions. We have studied these distributions,
and effectively found out that they are different in the two cases. In figure 2(a) we show
the probability distribution ofλ1 in the two-dimensional case. We have plotted the RW

Figure 2. Probability distributions of the inertia moments (a) λ1 and (b) λ2, for d = 2 and
s = 200. The normalized histograms in full curves represent the Monte Carlo data for SAWs
and RWs withN = 106 and 2×107, respectively. The dotted curve represents distribution (23).
For convenience, a scaling factors−1 was used in the horizontal axis.
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distribution (obtained with an independent simulation employing the method of [3], and
using N = 2 × 107 samples), as well as the SAW distribution. The number of SAW
samples used isN = 106. The difference between both distributions is evident. First
we notice the expected shift of the SAW distribution to higher values ofλ1. The second
difference is that the SAW distribution spreads around its most probable value much more
than in the RW case, that is, the standard deviation of the SAW distribution is significantly
larger than the corresponding one for the distribution of the common RWs. This, of course,
is also related to the scaling laws of the distributions and their statistical moments, discussed
in section 4.1.

As mentioned before, the probability distribution for the eigenvaluesλk can be

Figure 3. As figure 2 but ford = 3 and (a) λ1, (b) λ2

and (c) λ3.
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Figure 4. As figure 2 but forλ1 in the d = 4 case.

approximated, in the case of unrestricted RWs, by a chi-square distribution of the form (23).
For simplicity, this approximate distribution was not plotted in figure 2(a). We were
interested in checking whether the same distribution would fit adequately in the SAW case,
and therefore we used the method already explained in [3] to evaluate the distribution
parameters. The result is plotted in figure 2(a) (dotted curve) and we can see that both
distributions are not strictly coincident but there exists an acceptable agreement, albeit not
so good as in the RW case [3].

Qualitatively similar results are presented in figure 2(b) for the case ofλ2. In this case
we can observe the different scale in thex-axis stressing the fact that the second inertia
eigenvalue is on average significantly smaller thanλ1. The differences between the RW
and SAW cases remain the same as in theλ1 case: the SAW probability distribution forλ2

is located in a shifted position with respect to the RW distribution, and possesses a larger
dispersion around its most probable value.

We have also studied the eigenvalue probability distributions in spaces of higher
dimension. The results ford = 3 are placed in figure 3. When comparing the SAW
and RW distributions, we can observe that the first ones present a shift in the most probable
value location, and wider distributions, similarly as reported for thed = 2 case. In this case,
however, the shift is less significant. This tendency is maintained whend is increased, as
can be seen in figure 4, which displays the four-dimensional distribution ofλ1. In this case
the most probable values are not much different, but the SAW dispersion is longer than in
the RW case. Ford → ∞ a SAW and an RW become equivalent objects (as measured as
their inertia eigenvalues) [27], and so both distributions should become identical in such a
limit. Note that the probability distributions for the SAW inertia eigenvalues differ from the
respective RW ones even when the space dimension is greater than or equal to the critical
dimension for SAWs (d > dc = 4).

4.3. Inertia moment ratios

The ratiosRij are a set of observables traditionally used to study the shape of RWs in lowd

spaces. In a previous work [4] we made a detailed study of the corresponding probability
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distributionsPRij
, arriving at the conclusion that the distribution

PRij
(z) =


1

U

zω−1(1 − z)γ−1

(1 + az)ω+ω′ 0 6 z 6 1

0 z > 1

(24)

fits excellently with the true ones in all cases.ω, ω′, γ anda are external parameters, and
U is a normalizing constant given by [4]

U = 0(γ )0(ω)

0(γ + ω)
(1 + a)−ωF

(
γ − ω′, ω; γ + ω; a

1 + a

)
(25)

where the functionF(α, β; γ ; z) is the well known hypergeometric function.
The parametersω, ω′, γ anda vary from case to case. They must verify the following

constraints [4]:

ω > 1 ω′ > 0 γ > 1 a > 0 (26)

and are related to the parametersα andν of distribution (23) in the limitd → ∞, i � j

[4]:

ω → νi

ω′ → νj

γ → 1

a → (αjνi)/(αiνj ).

(27)

For low d, however, the parameters must be evaluated numerically.
The fact that the probability distribution of the lowd SAW inertia eigenvalues spreads

around the most probable value much more widely than the corresponding ones for common
RWs might lead to the conclusion that the same would happen with the probability
distribution of the inertia moment ratiosRij . The results of our simulations indicate that this
conclusion is not true. In fact, the probability distributions of SAW and RW moment ratios
are, in general, very similar, the SAW distributions being slightly more peaked than the RW
ones, indicating clearly that the probability distributions for the different inertia eigenvalues
are not independent: the independence between the distributionsPi(λi) andPj (λj ) would
imply a differentPRij

(see reference [4]).
In figures 5 and 6 we display the results obtained in representative cases: figure 5

corresponds toPR21, d = 2; and figure 6 corresponds to the distributions in three-dimensional
spacesPR21 (a), PR31 (b), andPR32 (c). The dotted curves correspond to the RW distribution
while the full histograms corresponds to the SAW case.N = 106 (2×107) for SAWs (RWs).
It is evident from all these plots that both SAW and RW distributions are not much different,
and that the existing difference between distributions is less significant ford = 3. Ford > 4
both distributions become virtually coincident.

An additional plot is present in figures 5 and 6: the full curves, not very distinguishable
from the corresponding SAW histograms, represent a nonlinear least-squares fit of
distribution (24) to the Monte Carlo data. As in the common RW case [4], the agreement
between the Monte Carlo data and the analytical distribution is excellent, and allows us to
conclude that the mentioned distribution can be taken as a very good approximation to the
true one for both RW and SAW cases, and for all ratiosRij (i > j ). In table 4 we give the
values taken by the parameters of distribution (24) obtained from the nonlinear fits.



5468 S J Sciutto

Figure 5. Probability distributions of the inertia
moment ratioR21 for d = 2 and s = 200. The
normalized histogram in full curve represents the Monte
Carlo data for SAWs withN = 106 samples, while
the dotted curve corresponds to RWs withN = 2 ×
107 samples. The full continuous curve (not very
distinguishable from the SAW histogram) corresponds
to distribution (24) with parameters obtained from a
nonlinear least-squares fit to the Monte Carlo data [4].

Table 4. Representative values of parameters corresponding to the probability distribution (24)
for different ratiosRij , as obtained from nonlinear least-squares fits of (24) to the respective
Monte Carlo data [4].

d i j ω ω′ γ a

2 2 1 6.40 0.58 2.02 49.37
3 2 1 8.54 0.79 1.99 31.65
3 3 1 8.73 1.11 6.00 77.11
3 3 2 7.92 0.78 2.08 11.73

4.4. Asphericity and angle2

Another interesting observable to measure in a Monte Carlo simulation is the asphericity (7).
For d = 2 this observable is related to the ratioR21 via [4]

A =
(

1 − R21

1 + R21

)2

. (28)

This means that the probability distribution of the asphericity,PA, is connected toPR21. In
fact, from [4] and using the fact thatPR21(z) = 0 for z > 1, we obtain

PA(x) = 1√
x(1 + √

x)2
PR21(β(x)) (29)

where 06 x 6 1 and

β(x) = 1 − √
x

1 + √
x

. (30)

If PR21 is given by (24), thenPA can be written as follows:

PA(x) = 2γ−1

U

(
√

x)γ−2(1 − √
x)ω−1

(1 + √
x )2−ω′ [(a + 1) − (a − 1)

√
x]ω+ω′ . (31)

In figure 7 the results of our simulations ford = 2 are displayed. The full (dotted)
histogram corresponds to the SAW (RW) case, withN equal to 106 (2×107). Again, like in
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Figure 6. As figure 5, but ford = 3 and (a) R21, (b)
R31 and (c) R32.

the case of the moment ratios, the correlations between the inertia eigenvalue probabilities
show up in a somewhat sharp distribution for the asphericity, which presents a peak for
A ' 0.7. ForA → 0 the SAW distribution is significantly smaller than the RW one, but it
is always non-zero, even at the origin.

The full continuous curve which goes along the SAW histogram corresponds to
distribution (31), using the parameters of table 4 forR21 andd = 2; no fit was performed
using the asphericity simulation data.

It is evident that there exists an excellent concordance between distribution (31) and
the true one. Notice that the fact thatPA(0) 6= 0 requires thatγ = 2 [4]. The value
γ = 2.02 obtained from thePR21 fit (table 4) is consistent with this requirement, and the
small difference cannot be considered significant. Replacingγ = 2 in equation (31) we
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Figure 7. Probability distributions of the asphericityA
for d = 2 ands = 200. The normalized histogram in
full (dotted) curve represents the Monte Carlo data for
SAWs (RWs) withN = 106 (2 × 107) samples. The
full continuous curve (not very distinguishable from the
SAW histogram) corresponds to distribution (31) with
parameters taken from table 2 for the corresponding
d = 2 case (no fit was performed using the asphericity
Monte Carlo data).

Figure 8. Probability distributions of the asphericityA
for d = 3 ands = 200. The normalized histogram in
full (dotted) curve represents the Monte Carlo data for
SAWs (RWs) withN = 106 (2 × 107) samples.

obtain

PA(x) = 2

U

(1 − √
x)ω−1

(1 + √
x)2−ω′ [(a + 1) − (a − 1)

√
x]ω+ω′ (32)

as an analytical distribution of the asphericity in two dimensions.
We have also studied the asphericity in spaces of higher dimensions. Figure 8 shows

our results ford = 3. The full (dotted) histogram corresponds to the SAW (RW) case,
with N = 106 (2 × 107). It can be seen that both distributions do not present important
differences. Ford > 3 the differences between curves becomes even smaller, and in fact
both curves are virtually coincident ford > 4.

We also want to mention that a previous simulation of the three-dimensional
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Figure 9. Probability distributions of the angle2 (equation (8)) fors = 200 and (a) d = 2,
(b) d = 3. The normalized histogram in full (dotted) curve represents the Monte Carlo data for
SAWs (RWs) withN = 106 (2 × 107) samples.

asphericity [8] fors = 140 is in acceptable agreement with the present one. We recall,
however, that in the simulation of [8], the number of samples used (105) is one order of
magnitude smaller than in our simulation.

We conclude this section presenting the simulation data for the angle2 defined in
equation (8). A non-uniform distribution for2 indicates that there exist correlations between
the end-to-end vectorrs and the principal axis of inertiau1 [3].

In figure 9 we present the distributionsP2, in the d = 2 (a) and d = 3 (b) cases,
and for SAWs (full histograms) and RWs (dotted histograms). The number of samples,N ,
is 106 (2 × 107) for SAWs (RWs).

We can see that in all cases both distributions are similar, the SAW curve being slightly
more peaked than the RW one. A remarkable fact is that the most probable value is virtually
the same for both SAWs and RWs, suggesting that this quantity does not depend upon the
self-avoidance condition (2). Notice that for both SAWs and RWs,P2(0) 6= 0 (= 0)
for d = 2 (d > 2) [3]. For d > 3 and like in the cases of the inertia moment ratios and the
asphericity, both SAW and RW probability distributions become practically coincident.

In [9] the mean value〈cos2〉 was calculated for SAWs of different lengthss, ranging
from 8 to 1024. We have compared our data with such calculations finding no discrepancies
(the number of samplesN used in [9] is less than or equal to 105).

5. Conclusions and final remarks

We have exhaustively analysed the shape properties of self-avoiding walks (SAWs). The
probability distributions of the principal inertia moments,λk, their ratios,Rij , the asphericity,
A, and the first quadrant angle between the end-to-end-vector and the principal axis of inertia,
2, were evaluated in a variety of cases, together with related statistical parameters.

The Monte Carlo simulations were performed keeping the space dimension,d, and
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the size of the walks,s, fixed. The pivot algorithm, described in section 3.1, was used
to generate the SAW samples in all cases. The probability distributions were estimated
numerically by means of adequately normalized frequency histograms. The number of
independent samples used in most cases, typically 106 for SAWs and 2×107 for conventional
random walks (RWs), is large enough to obtain a high-precision representation of the
distributions.

The dependence of these distributions on the SAW size was first considered, arriving at
the following conclusions. (i) The distributions for the inertia eigenvalues obey the same
scaling laws as the traditional global observables (i.e. the radius of gyration, the squared
end-to-end distance, etc) (equation (14)). (ii) The corrections to scaling for the eigenvalues
maintain the sign of the corrections for the radius of gyration, reported in [22], that is,
positive (negative) for two (three) dimensions. These corrections are not equal for every
eigenvalue, especially in the three-dimensional case. (iii) The probability distributions of
shape-describing quantities like the asphericity present only small variations as the size of
the walks tends to infinity. These small variations are more significant in three than in two
dimensions.

We have used our Monte Carlo data to obtain estimates of the inertia moment
amplitudes (19), placed in table 3.

Then we have performed an exhaustive analysis of several shape-describing observables
for fixed walk length s = 200. Both SAW and conventional RW distributions were
calculated at each case in order to compare the shape properties of both objects.

The SAW inertia eigenvalue distributions are always wider than the respective RW
ones, and are of course shifted towards larger sizes due to the already mentioned scaling
properties (see section 4.1). This means that, on average, a SAW is ‘bigger’ than an RW of
equal length, but its size is less predictable. Furthermore, the existence of overlaps between
distributions (see figures 2 and 3) indicates that a significant fraction of the SAWs that can
be generated in a Monte Carlo simulation will occupy a similar, or even smaller, volume
(or area) than the average RWs.

On the other hand, the analysis of the other quantities, like the ratios of inertia moments,
the asphericity or the angle between the principal inertia axis and the end-to-end vector,
shows us that the corresponding probability distributions are somewhat more peaked than
the respective RW ones. This means that SAWs possess a more definiteshape, in contrast
to a more determinedsize for the RWs, as stated in the previous paragraph.

The SAW probability distributions for the ratiosRij were used to check the validity of
the analytic distribution (24), which was used in [4] for the case of conventional RWs. In
all the cases considered the agreement is excellent, and this lead us to the conclusion that
the mentioned distribution (24) is a very good approximation of the true ones for both RWs
and SAWs.

The analytic distribution for the two-dimensional asphericity (31) (obtained from the
distribution for the ratioR21, as explained in section 4.4), evaluated using the parameters
coming from the fit to the two-dimensionalR21 distribution (table 4), has proved to be
practically coincident with the true distribution (see figure 7), obtained from an independent
Monte Carlo simulation.

These two last results are consistent with the conclusion that the functional form of the
probability distributions of both the ratiosRij and the two-dimensional asphericity seem to
be of universal nature, not dependent on the ‘interactions’ which differentiate SAWs from
RWs. This universality refers only to the functional form of the distributions, since the
values of the parameters of equations (24) and (32) do vary when passing from RWs to
SAWs. Note that the asphericity ind dimensions can be put as a function of the ratios
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R21, R31, . . . , Rd1 (see equations (6) and (7)), and since the mentioned properties of the
ratios apply for the arbitrary dimension case, the conclusions for the asphericity should also
be true for all spatial dimensions. We leave it for a future work to analyse the origin and
implications of these conclusions in a more complete and rigorous way.
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